For Establishing A General Methodology of Creative Problem-Solving / Task-Achieving

Toru Nakagawa Osaka Gakuin University, Japan, nakagawa@ogu.ac.jp

Global TRIZ Conference 2013 | www.koreatrizcon.kr Seoul Trade Exhibition & Convention, Seoul, Korea | July 09–11, 2013

Introduction:

Part I. Why a new target?

How TRIZ can be learned and mastered widely?

To whom and where TRIZ wants to go?

Do people want TRIZ? or what?

General methodology for creative problem solving !

Part II. How can we evolve from TRIZ to the new target? TRIZ -- reconsider the Four-Box Scheme USIT -- Unified concepts and Six-Box Scheme General methodology for creative problem solving

TRIZ Conference 2013 in Korea

Global TRIZ Conference 2013

Part I: Why a new target?

- General methodology for creative problem solving

Motivation: Why the creative problem solving method, TRIZ, does not penetrate more smoothly among people?

I built up a number of models to consider this problem.

Model of a person to learn TRIZ

Global TRIZ

Conference 2013 in Korea

Model of an engineer and an industry to learn and accept TRIZ

Model of activities of TRIZ promoters (in Japan)

Model of areas where the application of TRIZ is desired

=> People in the wide range of application areas of TRIZ want not TRIZ itself but more general methodology effective for creative problem solving

Model (a) of a person to learn and master a technique like TRIZ

Conference 2013 in Korea

Global TRIZ Conference 2013 4

Model (b) of activities for an engineer and a company to learn and master TRIZ

Paper-code

Paper-code

Model (c) of overall activities of TRIZ promoters in Japan (Merged)

Model (d) of areas for TRIZ application -> Our new general target

The models have guided us to a new target at a higher level.

79

Conference 2013 in Korea

Part II. How can we evolve from TRIZ to the new target?

Various approaches to creative problem solving

Basic paradigm in science and technology: Four-Box Scheme of abstraction

TRIZ -- Knowledge bases and techniques across the fields

USIT (Unified Structured Inventive Thinking) -- Unified concepts and Six-Box Scheme

General methodology for creative problem solving

(flobal TRIZ Conference 2013 in Korea

Various conventional approaches/methods for Creative Problem Solving & Task Achieving:

- (a) **Basic approach in science & technology**: Principles, theories, application & design methods in each discipline.
- (b) Approaches learning from cases: Building and using case bases and knowledge bases
- (c) Approaches to analyze the problems and tasks: Cause-effect, system, mechanism,
- (d) Approaches to support idea generation: generating as widely and as freely as possible,
- (e) Approaches to arrange environment and take care of mental aspects:

relaxed feeling, free atmosphere, thinking the ideals, etc.

- (f) Approaches for realizing the idea: Selecting good ideas, designing & development, implementation, etc.: technologies in the discipline.
- (g) Approaches for thinking the future and suggesting the directions:
- (h) Approaches towards general methodologies for problem solving:

Integrating all the approaches above to build a methodology useful and practical. A system of methods suitable for each type/field of problems and tasks, and also a system of methods universally applicable to a wide range of types and fields.

(Follobal

TRIZ

Paper-code

TRIZ Methodology for Problem Solving Skip Toru Nakagawa Nov. 1997 TRIZ Science & Technology DB Patents DB World of Information in Science & Set ups→ Effects Problem → Solution Technology "TRIZ Home Page in Japan" Since Nov. 1998 Inverse retrieval World Editor: T. Nakagawa solving contradictions of technology Extracted by TRIZ **Principles &** Trends of Target→ Method, Contra- Principles of Examples .diction Systems Method, Invention, of Invention Support of **Problem Definition** World of Your Own **Description of** Solution for **Problem** (nt Your Own Problem Your Own Problem TRIL Global TRIZ Conference 2013 11 Conference 2013 in Korea

Basic scheme for Problem Solving (Conventional: "Four-Box Scheme) Science & Technologies (Many models, specialized in areas) ==> (Traditional) TRIZ (Across areas, but many separate tools)

Tools of TRIZ (Based on the Four-Box Scheme)

Essence: Many tools and huge knowledge bases are applicable across technical fields. But parallel structure of multiple tools = partialness in each method

Conference 2013 in Korea

Essence of TRIZ in 50 Words

Essence of TRIZ:

Recognition that

technical systems evolve

towards the increase of ideality

by overcoming contradictions

mostly with minimal introduction of resources.

Toru Nakagawa TRIZCON2001, Mar. 25-27, 2001

Paper-code

Thus, for creative problem solving, TRIZ provides with a dialectic way of thinking,

i.e.,

 to understand the problem as a system,

to make an image of the ideal solution first, and

to solve contradictions.

Global TRIZ is huge and complex, people often say, but TRIZ its essence is easy to learn and understand. Global TRI

15

USIT (Unified Structured Inventive Thinking):

Developed by Ed Sickafus (USA) in 1995 under the influence of TRIZ. It has a straightforward process with unified concepts and methods.

"USIT Operators": A system of solution generation methods -- Obtained by re-organizing all the solution methods in TRIZ T. Nakagawa, H. Kosha, and Y. Mihara (ETRIA 2002)

TRIZ methods for Solution Generation

40 Inventive Principles76 Inventive Standards35 Trends ofSystem Evolution

Separation Principle Self-X Principle

Trimming

Conference 2013 in Korea

Global

TRIZ

USIT Operators

(5 Main-, 32 sub-methods)

Object Pluralization

Attribute Dimensionality

Function Distribution

Solution Combination

Solution Generalization

USIT Operators are further classified in a hierarchical way.

An example of USIT Operator sub-method

- (1) Object Pluralization Method
- (1c) Divide the Object (into 1/2, 1/3, ..., 1/□).

Divide the Object into multiple parts $(1/2, 1/3, ..., 1/\infty)$, modify the parts (slightly,

or differently for different parts),

and combine them for using together in the system.

TRIZ Inventive Principles which brought this sub-method:

- P1. Segmentation
- P2. Taking away
- P3. Local quality
- P15. Dynamicity

Conference 2013 in Korea

Global TRIZ

Examples of Application of USIT Operators: (Part)

Picture Hanging Kit Problem. USIT Operators are applied to the nail.

(5) Solution Generalization Method in USIT

Represent a solution in a more general way,

- form a solution template, and
- obtain concepts of solutions
 - in the associative manner.
- Also generate a hierarchical system of solutions.

USIT (i.e., a simple and unified TRIZ) analyzes any problem in a standard process and generates solutions systematically and comprehensively.

Global TRIZ Conference 2013 in Korea

Paper-code

T. Shimoda and T. Nakagawa (2006)

How to fix a string shorter than the needle at the end of sewing

Problem Definition:

- (a) Undesirable effect: The string is shorter than the needle and prohibit applying the standard way of making a knot.
- (b) Task statement: Devise methods for fixing the string left shorter than the needle.

(c) Sketch:

Conference 2013 in Korea

Golo

(d) Plausible root causes:

The standard way of making a knot is applicable only when the string left is longer than the needle.

(e) Minimum set of relevant objects:

Cloths, string (already sewn), string (left), the needle

Problem Analysis (1): Understanding the present system

(1) Functional analysis: What is the function of the Needle?

A base for making a loop of the string; A guide for passing the end of the string through the loop

(2) Attribute analysis: Properties taken for granted form the Constraints:

The string does not expand = Its length does not change. The needle is hard = No change in shape and length.

When any of these constraints is lifted, there appears a novel solution.

(3) Analysis of time characteristics: Processes of sewing: Solutions at the final stage and solutions at any earlier stage.

(4) Analysis of space characteristics: A knot makes the string thick at the end. Watch out about the topology in making a knot and in the 'hole and string'.

Paper-code

Several known solutions:

A well-known technique. Difficult to make the loop of string in the space; need some practices The hole of the needle has a slit, thus the string can be passed and removed without cutting the loop of the string. (a commercial product)

Problem Analysis (2) : Understanding the Ideal system Ideal arrangement of a sting in space for making a knot

It should be nice if we could hold the string in this arrangement in the space.

SKI

USIT Training: In-company and open trainings

- USIT is much easier to learn than (conventional) TRIZ.
- USIT fits well for group work.
- USIT is applicable to real problems for conceptual solutions.
- Use TRIZ knowledge base tools in a complementary way.

Six-Box Scheme of USIT: Toru Nakagawa (2005) New Paradigm for Creative Problem Solving

A unified method across the fields

(generalized problem)

(generalized solution)

6-Box Scheme of Creative Problem Solving (USIT)

6-Box Scheme of Creative Problem Solving (USIT)

(Concretization)

General Methodology of Creative Problem-Solving (Outline)

- For technological problems
 - (0) Whole procedure
 - (1) Finding the problem
 - (2) Understanding the present system
 - (3) Imaging the ideals
 - (4) Generating ideas
 - (5) Constructing solutions

For non-technological problems

- (0) Whole procedure
- (1) Finding the problem
- (2) Understanding the present system
- (3) Imaging the ideals & visions
- (4) Generating ideas
- (5) Constructing solutions

Further extension of TRIZ

Global guided by the new paradigm of the 6-Box Scheme (of USIT)

TRIZ Conference 2013 in Korea

General method for creative problem-solving/task-achieving (for technology)

Whole procedure		Imaging the ideals			
Consistent Sim whole procedure proc	nple/specialized cesses	Thinking the images	Desirable C behaviors & t	Consider he direction	
Finding the problem		of the ideals	properties	of evolution	
Understanding the Consider the		Generating ideas			
problem systematically	goals and tasks	Techniques of	Collection of F	Resolve	
Consider from	Focusing	idea generation	possible hints c	contradictions	
broad perspectives t	the problem	Generate ideas a	as Identifying	Identifying	
Understanding the present system		widely as possible excellent ideas		eas	
		Constructing solutions			
understandingUnderstandingdifficulties andthe mechanism ofroot causesthe present system		Extending	Improving sc	Improving solutions with the ideas	
		the ideas	with the idea		
Functions space & time Clarifying		Designing	Introducing	Introducing good ideas	
& attributes characteristic	s contradictions	new solutions	used in diffe	used in different fields	
		Solving second	ary Identifying ar	Identifying and evaluating excellent solutions	
Examine various Learn similar tasks		problems	excellent sol		

General method for creative problem-solving/task-achieving

Requirements at the preceding stage

(for technology) Skip

Requirements at the succeeding stage

General method for creative problem-solving/task-achieving (for non-technology fields) (e.g., humans, society, business)

Global TRIZ Conference 2013

31

Whole procedure		Imaging ideals & visions				
Consistent whole procedure	Simple/specialized processes		Thinking the images of ideals	Stating the vision	Consider the directions & steps of evolution	
Finding the problem		Conoratin	aidoac			
the problem	Consider tasks, and	Consider the goals, tasks, and visions			Resolve	
From multiple	Focus the	Consider	idea generation	possible hint	s conflicts & contradictions	
perspectives	problem in steps		List up the ideas	sible	Identifying excellent ideas	
Understanding the present system		Constructing solutions				
difficulties and root causes	the mechanism of the present system		Extending the ideas	Improvi with the	Improving solutions with the ideas	
Functions & properties of organizations & persons	space & time character- istics	Clarifying contra- dictions	Designing new solutions	Introdu differen	Introducing good ideas in different countries and fields	
Examine preceding casesLearn similar tasks in different countries, companies, and fields		Solving second problems	ary Identif	Identifying and evaluating excellent solutions		

Areas where our 'Creative Problem Solving Methods' are wanted.

Note: Actually, we should find and get specific opportunities to try and apply the Creative PS/TA methods. Development of the method and extension of application area should be carried out in parallel.

Conference 2013 in Korea

Global TRIZ Conference 2013 32

Paper-code

Concluding Remarks

- (1) For understanding the difficulty in penetrating TRIZ widely, the situations have been investigated by building **multiple models**.
- (2) Recognizing 'TRIZ is just one of many items for a person to study', the contents of TRIZ should be either well customized for the (narrow range of) target persons or well generalized for the (wider range of) target persons.
- (3) Individual persons can learn TRIZ from outside information and promotion, but mainly from his/her personal learning and experiences.
- (4) For an industry to accept TRIZ, personal growth of TRIZ practitioners/ leaders, application of TRIZ to real projects, and promotion by the management need to go together.
- (5) TRIZ is applicable in the technological as well as non-technological areas. Thus TRIZ has a very wide range of application areas. However, not TRIZ itself but a more general methodology is wanted. Thus we have been guided to a new target at a higher level.

- (6) 'General methodology of creative problem solving' is expected to be a further extension of TRIZ, especially guided by the Six-Box Scheme (of USIT).
- (7) In the technology fields,

it is under construction with TRIZ/USIT in its framework and components. Various methods and processes need to be associated and integrated.

Significance of the vision need to be understood widely. Effective in technological innovation and creative research & education.

(8) In the non-technology fields, it is similar to the one in technology in its framework and basic tools.

However, problems are often bigger, more complex, and delicate. Mental aspects of stakeholders have bigger weight than tools. Various methods **need to be developed more clearly.**

(9) Realizing the higher level target, we will be able to choose correct directions in our application, development, and promotion activities.

Thank you for your attention

Toru Nakagawa (Osaka Gakuin University, Japan) nakagawa@ogu.ac.jp

"TRIZ Home Page in Japan" http://www.osaka-gu.ac.jp/php/nakagawa/TRIZ/eTRIZ/ (English)

Global TRIZ Conference 2013 35