
U-SIT And Think News Letter - 54

3. Mini USIT Lecture – 54
5. Heuristics for Solving Technical Problems

Using the heuristic “SYMMETRY”

The symmetry heuristic suggests looking for symmetry in a problem. If it exists take it to extremes;
examine zero symmetry and examine infinite symmetry, whatever those ideas suggest to you. If there
is no symmetry, try introducing symmetry. Of these suggestions, introducing symmetry may be the
least familiar. Can you think of a situation where you introduced symmetry to solve a problem?

In condensed-matter physics symmetry is a very important idea that is used to characterize and
understand crystalline matter. It is also used to solve complex theoretical problems where
introducing symmetry often simplifies equations to be solved, e.g., introducing symmetry such as
periodicity having a unit cell of a crystal’s lattice as its basic element.

An area of problem solving that I find interesting is art, especially in sketching and painting. In one
type of sketching, symmetry is introduced to solve the problem of rendering a three-dimensional
impression. In this case the symmetry is not in composition but in technique. Can you think of an
example? I have in mind the use of parallel lines to develop degrees of shading by crosshatching.

What intrigues me about crosshatching is its ability to suggest an object without the object being
defined by outlines. The result of this technique has always struck me as a bit magical; it causes me
to see something that shouldn’t exist since it has no definitive outlines. This is a good example of
thinking by the non-language brain hemisphere, the intuitive side of one’s brain. See example on the
next page.

In this case symmetry is used to create the object information by the use of parallel lines. The lines
can be thought of as objects having attributes of weight, spacing, length, width, curvature, and
density (or weight).

Art, in my mind, is another field of problem solving.

Unified Structured Inventive Thinking is a problem-solving methodology
for creating unconventional perspectives of a problem, and discovering
innovative solution concepts, when conventional methodology has waned.

Updates and Commentary

1 USIT – How to Invent

e

y

k

s

2 USIT – an Overview

3 Mini Lectur

4 Classroom Commentar

5 Heuristics for Solving
Technical Problems

6 Feedbac

7 Papers and essay

8 Other Interests

Dear Readers:

. This mini-lecture continues the discussion of heuristics with an
example of “symmetry”. How would you apply this heuristic?

. Frederic Mikusek’s variation of the 20,000 lights problem is solved
and our solutions are given.

Editor: Ed Sickafus, PhD Copyright Ntelleck, LLC 2005 NL_54 3 January 2006 1/5

The 20,000 lights problem.

The 20,000 lights problem was introduced for you to solve as an example of what one can do with the
heuristic Simplify! In discussing its solution it was demonstrated that one approach to simplifying the
solution process is a graphic technique examining only a portion of the system of lights and persons.

A matrix was constructed having columns labeled “Light Number” and rows labeled “Ordinal
Number of Person” (both are ordinal numbers). By marking boxes of the matrix to indicate the new
state of a light when its off-on state changes, a graphic image of which lights are on and which are off
was created. The resulting image was a triangular array whose hypotenuse (the principal diagonal of
the square matrix) showed the final state of each light. The complimentary array has no information
in it. Examination of the diagonal revealed useful patterns that could be expressed mathematically
and then extrapolated to any number of lights. Two patterns were used to check agreement for the
number of on lights in a group of 20,000.

We now have for consideration, an interesting variation of this problem proposed by Frederic
Mikusek; if the lights have three states how many remain on? Here’ the original problem and
Mikusek’s variation:

In a long hall are 20,000 electric lights that are operated each by a pull-chain. Initially all lights are
turned off. A person walks through the hall and pulls every chain, thus turning on each light. A second
person walks through and pulls every other chain – #2, #4, #6, etc. up to, and including #20,000 – thus
turning off those lights. The next person walks through and pulls every third chain – #3, #6, #9, etc. –
thus turning off some lights and turning on others. The next person pulls every 4th chain, the next
every 5th chain, and so on until the 20,000th person passes through and pulls the chain of #20,000. The
question is, after the 20,000th person has pulled the last chain, how many lights remain on?

Mikusek’s variation: “Now what if the light changes from off to green, then from green to red,
then off again? How many green and red lights remain on?

My first reaction on reading this variation was to wonder what the relative sizes of the numbers of
green, red, and off lights might be? An intuitive answer came to mind – maybe they are equal.
However, I had no idea how to justify that answer, so I ignored it and moved on.
Since the original version of the problem was solved by simplification using a small matrix, I started
there. Suspecting that a larger matrix would be needed to see any patterns for a three-state system, I
used a 26 by 26 matrix (convenient for printing). The following results were found on its diagonal:

Editor: Ed Sickafus, PhD Copyright Ntelleck, LLC 2005 NL_54 3 January 2006 2/5

Light Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
g r r - r g r g - g r - r g g r r - r - g g r r - g

I studied these results for some time but couldn’t identify any pattern. I then decided to try a different
approach; I wrote a computer program using the programming feature of Mathcad 11. The program
(shown below for the interested programmers) and its results follow:

 st := 20,000 lights

Dgnl st()

1

1
2

3

4
5

6

7

8
9

10

11

12
13

14

15

16
17

18

19

20
21

22

23

24

25
26

"G"
"R"

"R"

"O"
"R"

"G"

"R"

"G"
"O"

"G"

"R"

"O"
"R"

"G"

"G"

"R"
"R"

"O"

"R"

"O"
"G"

"G"

"R"

"R"

"O"
"G"

=

DGNL(st) is a vector of the diagonal
values of an st x st matrix.

Editor: Ed Sickafus, PhD Copyright Ntelleck, LLC 2005 NL_54 3 January 2006 3/5

Dgnlst() col 2←

Celli "G"←

i i 1+←

,

Two opportunities for simplification presented themselves: 1) consider only a triangular array above
the principal matrix diagonal; 2) Calculate and save only the diagonal elements, thus requiring only a
vector.

i = vector cell-index.

Vector’s cells initialized to G
representing the 1st row of the
matrix.

Move to row 2.

k = matrix column.

 Change
 state
 of
 cells
 in column k.

Jump to next k
Inc. matrix column

Inc. step size

Inc. matrix row

Initialize counters
for number of
off , green ,
and red lights

Count number of

Off,

Green,
and

Red lights.

Increment loop.

Return Cell

Ng st()

5.373 103
×

7.318 103
×

7.309 103
×

⎛⎜
⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎟
⎠

=

off (0)

green (1)

red (2)

5,373 off lights
7,318 green lights
7,309 red lights

i 1 st..∈for

step 2←

Cellk "O"← Cellk "R"

:= *

if

Cellk "R"← Cellk "G"if

Cellk "G"← otherwise

k k step+←

k col col step+, st..∈for

col col 1+←

step step 1+←

row row 1+←

row 2 st..∈for

Lg1 0←

Lg2 0←

Lg3 0←

Lg1 Lg1 1+← Celli "O"if

Lg2 Lg2 1+← Celli "G"if

Lg3 Lg3 1+← otherwise

i i 1+←

i 1 st..∈for

Cellreturn

Frederick Mikusek also solved this problem using a computer program. His is written in Basic and is a bit
simpler and easier to read than mine. He writes …

green = 0; red = 0; color = 0; n = 20000
Do Until j = n
j = j + 1
i = 0
color = 0
Do Until i = j
i = i + 1
If (j / i) = Int(j / i) Then color = color + 1
'Remark : this means if the man number i will trigger a change for light number j ; j is a multiple of i
If color = 3 Then color = 0
'Remark : replace 3 (0=off ; 1=green ; 2=red) by 2 (0=off ; 1=on) and you find 141 ;-) [The answer
to the original problem.]
Loop
If color = 1 Then green = green + 1
If color = 2 Then red = red + 1
Loop

His results are: 7318 green lamps on and 7309 red lamps on and 5373 lamps off. Furthermore, he tested
his program for the 2-state case and got the correct results. (I didn’t think to do that!)

He also discusses the heuristics he used – the main point of our on-going discourse. Here are his
comments with mine italicized in brackets.

Remark : Here are some heuristics used :
"if you have to count something, maths are useful"
"if you can not do it by yourself have it done by somebody else or by a machine" ; [Yes!]
"search for a pattern";
"search for a change in a pattern and search what triggers it" ; [Root cause – very useful]
"first think little" (I tried first with a hand filled matrix 37*37 to check the results, unfortunately there
were some mistakes because I forgot that 36=6*6 ("symmetry")).
"simplify" (half of the matrix need not be filled);
"local quality" (only some cells of the matrix are useful); [A big time saver]
"use colours" (to see patterns);
"check results several times" (until algorithm gives same answers as the hand filled matrix) ;
[Mathematics usually allows independent checks – very useful.]
"universality" (algorithm should work for any positive number);
"try something new" (I tried visual basic for the first time because I did not see any obvious
mathematical analytical solution);
"solve a problem to discover which heuristics you use"(meta-heuristic);
"use your time for fun and learn something new everyday". [Makes getting up in the morning
worthwhile.]

This is a nice example of thorough introspection to identify heuristics that might otherwise go unnoticed –
a practice that reinforces one’s facility with the use of heuristics. Notice that his way of using a particular
heuristic may differ from your use of the same heuristic. That’s fine. Heuristics are personal tools that we
use sometimes without even understanding quite how to explain what we are doing.

Editor: Ed Sickafus, PhD Copyright Ntelleck, LLC 2005 NL_54 3 January 2006 4/5

8. Other Interests

1. Have a look at the USIT textbook, “Unified Structured Inventive Thinking – How to
Invent”, details may be found at the Ntelleck website: www.u-sit.net (Note; not at
www.ic.net)

2. USIT Resources Visit www.u-sit.net and click on Registration.

Publications Language Translators Available at …
1. Textbook: Unified Structured
Inventive Thinking – How to Invent

English Ed Sickafus (author) www.u-sit.net

2. eBook: Unified Structured Inventive
Thinking – an Overview

English Ed Sickafus (author) www.u-sit.net

 Japanese Keishi Kawamo, Shigeomi
Koshimizu and Toru
Nakagawa

www.osaka-
gu.ac.jp/php/nakagawa/TRIZ/

 Korean Yong-Taek Park www.ktriza.com/www/usit/
register_form.htm

“Pensamiento Inventivo Estructurado
Unificado – Una Apreciación Global”

Spanish Juan Carlos Nishiyama y
Carlos Eduardo Requena

www.u-sit.net

3. eBook “Heuristics for Solving
Technical Problems – Theory,
Derivation, Application” -- HSTP

English Ed Sickafus (author) www.u-sit.net

“Heurísticas para Resolver Problemas
técnicos – Teoría Deducción
Aplicación”

Spanish Juan Carlos Nishiyama y
Carlos Eduardo Requena

www.u-sit.net

4. U-SIT and Think Newsletter English Ed Sickafus (Editor) www.u-sit.net
 Japanese Toru Nakagawa and

Hideaki Kosha
www.osaka-
gu.ac.jp/php/nakagawa/TRIZ/

 Korean Yong-Taek Park www.ktriza.com.
Mini-lectures from NL_01 through NL_51 Spanish Juan Carlos Nishiyama y

Carlos Eduardo Requena
www.u-sit.net click on
Registration

Please send your feedback and suggestions to Ntelleck@u-sit.net and visit www.u-sit.net

To be creative, U-SIT and think.

7. Papers and essays

The following materials can be read by clicking on their titles. Links are also available on the USIT
website (www.u-sit.net/Publications)

1. “Injecting Creative Thinking Into Product Flow”
2. “Problem Statement”
3. “Metaphorical Observations”

Frederick ends his email with a request:

“I wish you will give us more heuristics about heuristics in 2006.”

I plan to do just that.

************************** To be continued *******************************

Editor: Ed Sickafus, PhD Copyright Ntelleck, LLC 2005 NL_54 3 January 2006 5/5

http://www.u-sit.net/PapersEssays/InjectUpdateWeb.htm
http://www.u-sit.net/PapersEssays/ProblemStmnt.htm
http://www.u-sit.net/PapersEssays/MetaphoricalObsrvtns.htm

